• Haus@kbin.social
    link
    fedilink
    arrow-up
    1
    arrow-down
    1
    ·
    edit-2
    1 year ago

    It’s been a while, but I think I remember this one. Lim 1/n =0 as n approaches infinity. Let x^0 be undefined. For any e>0 there exists an n such that |x^(1/n) -1| < e. If you desire x^(1/n) to be continuous at 0, you define x^0 as 1.

    E2a: since x^(1/n)>1, you can drop the abs bars. I think you can get an inequality to pick n using logs.

    • uberrice@feddit.de
      link
      fedilink
      arrow-up
      4
      ·
      edit-2
      1 year ago

      Simpler: x^1 = x, x^-1 = 1/x

      x^1 * x^-1 = x^0 = x/x = 1.

      Of course, your explanation is the “correct” one - why it’s possible that x^0=1. Mine is the simple version that shows how logic checks out using algebraic rules.