• agitatedpotato@lemmy.world
    link
    fedilink
    English
    arrow-up
    114
    ·
    1 year ago

    I like how they quickly glance over the fact that you need line of sight to connect and call that a good thing because people behind a wall cant steal your data.

    • j4k3@lemmy.world
      link
      fedilink
      English
      arrow-up
      33
      arrow-down
      4
      ·
      edit-2
      1 year ago

      Within the same room, it is possible to use a frequency of light that will reflect off of almost anything. I just got a window AC unit with a remote that defies physics. Like I can have a desk, and closed plantation shutters (slats and doors) in front of the receiver on the front of the unit, point the remote anywhere in the wrong direction and still activate the thing. It’s just an IR LED transmitter setup. I’ve never seen one that is quite this powerful. It is uber cheapo general electric bottom of the consumer grade junk category too.

      This is the NSA’s wet dream tech. Anyone with line of sight could intercept the data stream.

      • nothacking@discuss.tchncs.de
        link
        fedilink
        English
        arrow-up
        12
        ·
        1 year ago

        For low datarates sure, but at high speeds the dispersion caused by light taking multiple paths will be unacceptable. The reason single node fiber is so thin is to make sure light can only travel along one path. If you want multi gigabit speeds, you will need a direct line of sight.

      • redcalcium@c.calciumlabs.com
        link
        fedilink
        English
        arrow-up
        4
        ·
        edit-2
        1 year ago

        I put my smart IR blaster behind my tv and it still works. It can even reaches the AC unit in my room if the door is open.

      • Crackhappy@lemmy.world
        link
        fedilink
        English
        arrow-up
        2
        arrow-down
        1
        ·
        1 year ago

        I have a remote for a TV that does the same thing. Can point any direction and it works.

      • FaceDeer@kbin.social
        link
        fedilink
        arrow-up
        1
        ·
        1 year ago

        I could easily imagine having both this and traditional wifi on a device, so that it can fall back to radio frequencies if higher frequency light fails it. Wifi is super cheap these days.

    • Litany@kbin.social
      link
      fedilink
      arrow-up
      4
      arrow-down
      2
      ·
      1 year ago

      It absolutely is a good thing when security is concerned. WiFi is easy to snoop even if you’re not physically in the room, if you know what you’re doing. Sure there are encryption standards that are very good to tamp down on this. However, what’s even better with LiFi is you must be physically in the room to intercept any transmissions that are being sent.

      This is by design one of the largest advantages to LiFi. There are other practical uses as well, but it’s not like LiFi is designed to explicitly replace WiFi.

  • Sanctus@lemmy.world
    link
    fedilink
    English
    arrow-up
    31
    ·
    1 year ago

    Ma! Theres dust on the Li-Fi sensor again! Ma! You gotta clean it every week for the TV to work!

    Yeah this is gonna be great.

    • FaceDeer@kbin.social
      link
      fedilink
      arrow-up
      5
      arrow-down
      4
      ·
      1 year ago

      It’s going to be great if you don’t imagine it as a one-for-one replacement for traditional wifi and use it in applications that are specific to its strengths and weaknesses.

      Also, just how dusty is your house that one week’s accumulation is enough to snuff out a signal?

      • Sanctus@lemmy.world
        link
        fedilink
        arrow-up
        2
        ·
        1 year ago

        I’m making a joke about the article headline. It paints a picture to that it will replace traditional wifi when that is definitely not the case.

  • Zellith@lemmy.fmhy.ml
    link
    fedilink
    English
    arrow-up
    24
    ·
    1 year ago

    “Advantages of using light rather than radio frequencies”

    Nobody tell em how the electromagnetic spectrum works!

      • Lmaydev@programming.dev
        link
        fedilink
        English
        arrow-up
        1
        ·
        1 year ago

        the key technical difference being that Wi-Fi uses radio frequency to induce an electric tension in an antenna to transmit data, whereas Li-Fi uses the modulation of light intensity to transmit data.

  • BurningnnTree@lemmy.one
    link
    fedilink
    English
    arrow-up
    17
    ·
    1 year ago

    Is this expected to be a niche technology, or is it something that regular people will use? Seems like it would be a hassle to make sure that your li-fi receivers are within line of sight of your li-fi transmitters or whatever.

    • The Dark Lord ☑️@lemmy.ca
      link
      fedilink
      English
      arrow-up
      10
      ·
      1 year ago

      I could imagine it being installed on ceilings within certain rooms. Devices could be connected to both lifi and wifi. If lifi isn’t working it could fall back to wifi. But in reality, I have a feeling this will just be in niche scenarios, yes. I can imagine wifi getting 100x faster before this catches on.

    • Glisten6159@waveform.social
      link
      fedilink
      English
      arrow-up
      2
      ·
      1 year ago

      One in the ceiling of every room you want coverage in would be fine. Enterprise grade ones in stores.

      More importantly, though, it is more secure and higher performing. Could see the government using this for wireless SIPR rooms. They won’t until the tech is tested and refined first though.

      Let the hobby community do that part and the regular consumer will see something very usable in a few years.

  • NameOfWhimsy@reddthat.com
    link
    fedilink
    English
    arrow-up
    17
    arrow-down
    2
    ·
    1 year ago

    This is cool and all, but Wi-Fi and Li-Fi are equally “light-based”, it’s just using different frequencies. A higher frequency means potentially faster data transmission, but at the cost of faster attenuation. We see this with 2.4GHz vs 5GHz wifi already, and this sounds to me like a more extreme version of that

    • float@feddit.de
      link
      fedilink
      English
      arrow-up
      3
      ·
      edit-2
      1 year ago

      Yes and no. It’s both electromagnetic waves but the frequencies are very very far apart. So far, the techniques we use to emit and receive them are fundamentally different. Their propagation and transmission characteristics are also very different. Also, the data transmission rate (in theory) only depends on the bandwidth of the transmission channel, not the absolute frequency. But there’s more “room” for large bands at higher frequencies, of course.

    • shortwavesurfer@monero.town
      link
      fedilink
      English
      arrow-up
      2
      ·
      1 year ago

      Idk. Lifi uses actual light waves which are quite high up the spectrum. For sure Wi-Fi and Li-Fi are both electromagnetic waves, but light itself is a very small section of the EM spectrum. Above that wavelength you get ionizing radiation that gives you cancer and below that is harmless non-ionizing light and radio waves.

      • Celivalg@iusearchlinux.fyi
        link
        fedilink
        English
        arrow-up
        4
        arrow-down
        1
        ·
        1 year ago

        Regardless of if it’s on the visual spectrum or not, it’s all called light as long as it’s electromagnetic radiations

        Radio waves are light, gamma rays are light, gravitational waves are not, sound waves are not

  • Crow@lemmy.world
    link
    fedilink
    English
    arrow-up
    11
    ·
    1 year ago

    So IR blasters were the future all along? Maybe not infrared exactly but it seems pretty similar.

  • Parsnip8904@beehaw.org
    link
    fedilink
    English
    arrow-up
    6
    arrow-down
    1
    ·
    1 year ago

    Radio waves are light too. The article says that they’re planning to use near infrared range for Lo-Fi. It will basically be mostly limited to short distances and line of sight. I also wonder how natural light in those frequencies from cooking, exhaust etc. would affect the signal.

  • nothacking@discuss.tchncs.de
    link
    fedilink
    English
    arrow-up
    5
    ·
    1 year ago

    This is slightly less practical than just connecting your devices with fiber, at least you can run a cable around corners, and your connection won’t drop is a piece of paper block the line of sight to the access point.

  • kingthrillgore@kbin.social
    link
    fedilink
    arrow-up
    2
    ·
    1 year ago

    I can see LiFI being used in self driving systems as ideally you will always have LOS with other vehicles and it could be useful for signaling.

    Otherwise the applications arent great due to LOS.

  • giacomo@lemmy.world
    link
    fedilink
    English
    arrow-up
    3
    arrow-down
    1
    ·
    1 year ago

    Sounds like a cool replacement for point to point WiFi bridges. I wonder what sort of distances start to impact data rates and quality just due to air density or weather.

    • shortwavesurfer@monero.town
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      1 year ago

      Really depends on the size of the receiver. Its possible to use it at interplanetary distances if we are willing to build a mirror 10s of square miles in size. For point to point my guess would be a few miles. The horizon is the cutoff point for sure so one beam could never be more then the line of sight horizon at the altitude of the receiver for sure.

    • thisisnotgoingwell@programming.dev
      link
      fedilink
      English
      arrow-up
      1
      ·
      edit-2
      1 year ago

      As I understand, this is very low distance, basically for office settings. What ISPs will do to connect to/provide connectivity to a remote site is install point to point microwave radios. They are not impacted by weather too much, but they do lose signal strength if the radios are misaligned. That is what service providers will do if they want to offer cellular connectivity to a small town where running fiber would cost millions of dollars. They will contract a service provider to provide CTBH (Cell Tower Backhaul) via point to point microwave radios. Multiple radios can be used for redundancy / to add bandwidth capabilities by bonding channels together, suddenly they can provide 4g/5g cellular connectivity without needing to spend millions of dollars in installing fiber.