There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?
There are certain things whose number is unknown. If we count them by threes, we have two left over; by fives, we have three left over; and by sevens, two are left over. How many things are there?
105n + 23, where n is an integer.
it is implied that n = 0; you have the complete answer.
To others: this is modular math, Chinese remainder theorem From Wikipedia, the free encyclopedia
Sunzi’s original formulation: x ≡ 2 (mod 3) ≡ 3 (mod 5) ≡ 2 (mod 7) with the solution x = 23 + 105k, with k an integer
In mathematics, the Chinese remainder theorem states that if one knows the remainders of the Euclidean division of an integer n by several integers, then one can determine uniquely the remainder of the division of n by the product of these integers, under the condition that the divisors are pairwise coprime (no two divisors share a common factor other than 1).
For example, if we know that the remainder of n divided by 3 is 2, the remainder of n divided by 5 is 3, and the remainder of n divided by 7 is 2, then without knowing the value of n, we can determine that the remainder of n divided by 105 (the product of 3, 5, and 7) is 23. Importantly, this tells us that if n is a natural number less than 105, then 23 is the only possible value of n.