xkcd: Coordinate Precision but pi (π)?
I tried looking for some answer but found mostly
- People reciting pi
- People teaching how to memorize pi
- How to calculate pi using different formula
- How many digits NASA uses
Update question to be more specific
In case someone see this later, what is the most advanced object you can build or perform its task, with different length of pi?
0, 3 => you can’t make a full circle
1, 3.1 => very wobbly circle
2, 3.14 => perfect hole on a beach
3, 3.142 => ??
4, 3.1416 => ??
5, 3.14159 => ??
Old question below
In practice, the majority of people will never require any extra digit past 3.14. Some engineering may go to 3.1416. And unless you are doing space stuff 3.14159 is probably more than sufficient.
But at which point do a situation require extra digit?
From 3 to 3.1 to 3.14 and so on.My non-existing rubber duck told me I can just plug these into a graphing calculator. facepalm
y=(2πx−(2·3.14x))
y=abs(2πx−(2·3.142x))
y=abs(2πx−(2·3.1416x))
y=(2πx−(2·3.14159x))
Got adequate answer from @dual_sport_dork and @howrar
Any extra example of big object and its minimum pi approximation still welcome.
In addition to what @Pons_Aelius replied, it is also used as a benchmark/flex for computers, as to who can build a beefy enough machine or good enough card to calculate more digits of pi.
Nobody optimises their computer build by targeting pi computation. LAPACK benchmarks are far more useful, because linear algebra is actually extensively use; nobody calculates transcendental constants beyond IEE754 precision.
Additionally that’s not how hardware is designed.