AI one-percenters seizing power forever is the real doomsday scenario, warns AI godfather::The real risk of AI isn’t that it’ll kill you. It’s that a small group of billionaires will control the tech forever.
AI one-percenters seizing power forever is the real doomsday scenario, warns AI godfather::The real risk of AI isn’t that it’ll kill you. It’s that a small group of billionaires will control the tech forever.
Either ML is going to scale in an unpredictable way, or it is a complete dead end when it comes to artificial intelligence. The “godfathers” of ai know it’s a dead end.
Probabilistic computing based on statistical models has value and will be useful. Pretending it is a world changing AI tech was a grift from day 1. The fact that art, that cannot be evaluated objectively, was the first place it appeared commercially should have been the clue.
That is literally modelling how your and all our brains work, so no, neuromorphic computing / approximate computing is still the way to go. It’s just that neuromorphic computing does not necessarily equal LLMs. Paired with powerful mixed analogue and digital signal chips based on photonics, we will hopefully at some point be able to make neural networks that can scale the simulation of neurons and synapses to a level that is on par or even superior to thr human brain.
Neural networks have been phenomenal in the results they have achieved, out doing support vector machines, random trees, Markov models etc… But I do wonder if there is a bias towards it being able to mimick what the brain does like the other post said, and where are the limits.
For example in medicine, we want to spot unknown correlations to improve things like drug discovery, stratified medince, strange patterns in disease within a population that suggests unknown factors at play… There might be a mathematical model better that convolutional neural networks that doesn’t mimick the brain, but we maybe need an ai to develop that, maybe like deep thought in hgttg!
Hgttg?
42
ML isn’t a dead end. I mean, if your target is strong AI at human-like intelligence, then maybe, maybe not. If your goal is useful tools for getting shit done, then ML is already a success. Almost every push for AI in the last 60 years has born fruit, even if it didn’t meet its final end goal.
That’s pretty much what I meant. ML has a lot of value, promising that it will deliver artificial intelligence is probably hogwash.
Useful tools? yes. AI? No. But never let the truth get in the way of an investor bonanza.