• WetBeardHairs@lemmy.ml
    link
    fedilink
    arrow-up
    9
    ·
    1 year ago

    There is far, far more lithium in the earth’s crust than we will ever need for energy storage. We’re only just now hurting for it because Tesla showed that electric cars are feasible as daily drivers which caused a huge surge in demand. We’ll catch back up in a few more years. And the third world countries that let shitty mining practices take place are what give it a bad name right now. No one wants child slaves in the Congo to mine cobalt for us so we can drive to work. US mines are being built, new processes are being invented, and new battery chemistries that rely less on rare minerals are constantly being invented and implemented.

    You’re just being a sourpuss.

      • notapantsday@feddit.de
        link
        fedilink
        arrow-up
        7
        ·
        1 year ago

        There are lots of lithium battery types that do not contain any cobalt, such as LFP that is used more and more for electric cars.

        • rm_dash_r_star@lemm.ee
          link
          fedilink
          arrow-up
          4
          ·
          edit-2
          1 year ago

          Also Sodium Ion (Na-Ion) batteries are currently in production and could be a viable alternative as the technology advances and production ramps up.

          Right now Na-Ion batteries rival only the LFP type of Li-Ion battery (lithium-iron-phosphate) having a lower energy density than other Lithium chemistries. LFP is used commonly in utility power storage for its much greater safety and longevity, but it carries about 20% less power for size and weight compared to other lithium chemistries.

          At present the favored battery type for EVs are Lithium types with the highest energy density. Some combine several advantages of the various Li-Ion chemistries having the highest energy density with somewhat greater safety and longevity.

          Na-Ion is a new type of battery chemistry with lots of potential for improvement. They use more sustainable materials being cheaper and more abundant. If they could get the Na-Ion battery type within range of presently used Lithium technologies it would be a hugely better solution, a lot cheaper, a lot safer, and much easier on the environment.

          • MatthewToad43@climatejustice.social
            link
            fedilink
            arrow-up
            0
            ·
            1 year ago

            @rm_dash_r_star @notapantsday Is LMFP actually available in quantity? Wikipedia suggests not.

            The problem with sodium ion batteries, apart from lower density, is that they have a shorter lifespan. On the upside they’re easier to recycle. IIRC there was some recent research that might fix the lifespan problem.

            • rm_dash_r_star@lemm.ee
              link
              fedilink
              arrow-up
              1
              ·
              edit-2
              1 year ago

              Is LMFP actually available in quantity? Wikipedia suggests not.

              I realized that, I put an edit on there to not specify LMFP which has only been used in EVs in a limited fashion. I was confusing NMC which is actually the most common, oops. I changed it to a generic reference.

              The problem with sodium ion batteries, apart from lower density, is that they have a shorter lifespan.

              I’ve read differing reports on that. But yeah, cycle life is a big deal. In general it’s not great for the common Li-Ion types. LFP has pretty amazing cycle life, about five times greater and rivals the NiMH king. In many cases it’s well worth the additional size and weight, but for things sensitive to it like cars and handheld devices it’s a problem.

            • MatthewToad43@climatejustice.social
              link
              fedilink
              arrow-up
              0
              ·
              edit-2
              1 year ago

              @rm_dash_r_star @notapantsday Unfortunately batteries with nickel are still pretty widely used. However it’s definitely going in the right direction.

              https://www.iea.org/reports/global-ev-outlook-2023/trends-in-batteries

              In any case digging up fossil fuels is also pretty dirty, and has been known to pollute indigenous people’s drinking water, steal their land, and on occasion pay for private militias and government troops to put down protests.

              Obviously electric buses are preferable to electric cars. Public transport is worth investing in.

              Also on batteries, iron-air is promising for grid storage, but not likely to be used for vehicles.

              • rm_dash_r_star@lemm.ee
                link
                fedilink
                arrow-up
                1
                ·
                1 year ago

                In any case digging up fossil fuels is also pretty dirty, and has been known to pollute indigenous people’s drinking water, steal their land, and on occasion pay for private militias and government troops to put down protests.

                There isn’t much in industry exempt from that kind of thing, but countries go to war over access to oil. Anything that reduces consumption is good for mankind.

        • mr_washee_washee@discuss.tchncs.de
          link
          fedilink
          arrow-up
          1
          arrow-down
          4
          ·
          edit-2
          1 year ago

          more and more

          hopefully. still, evs are quite expensive. also the charging infrastrucutre would require a metric fuckton of copper, and that would raise copper prices to silly levels, and its already pricey.

          • ramenbellic@midwest.social
            link
            fedilink
            English
            arrow-up
            1
            ·
            1 year ago

            The charging infrastructure needed for the vast majority of BEV drivers, the vast majority of the time, is a power outlet in their garage.