Make up your mind Google AI. Is sound faster in air that is less dense or more dense?
Honestly, there is so much wrong in the AI answers that it’s hard to know where to start, but the direct contradiction of itself seems like a good start.
Make up your mind Google AI. Is sound faster in air that is less dense or more dense?
Honestly, there is so much wrong in the AI answers that it’s hard to know where to start, but the direct contradiction of itself seems like a good start.
Please note that R is an arbitrary constant and so is gamma. Thanks for providing the formula, but I still fail to remember the reasoning for it. But such is life
I haven’t looked into how it is derived, but if it helps, I R and gamma aren’t constants that are exclusively used for this equation (if that’s what you mean by arbitrary).
R is the ideal gas constant, which is no more arbitrary than any other physical constant like the speed of light in a vacuum or the elementary charge.
Gamma is the heat capacity ratio of the gas, which is the ratio of the gas’s heat capacity at constant pressure to that at constant volume. It’s a property of the material like density or viscosity and is used in many calculations involving gases.
In my opinion the gas constant is rather arbitrary but only in the same vein as e is, ie. It can be transformed away by choosing weird units.
Thanks for clearing up what you meant with gamma.
R is the Boltzmann constant multiplied by Avogadro’s number. It’s not more arbitrary than any other physical constant.
Yes.