• VindictiveJudge@lemmy.world
    link
    fedilink
    English
    arrow-up
    20
    arrow-down
    1
    ·
    8 months ago

    He’s still arguing that heavy objects would fall faster when dropped anywhere on Earth, though, specifically bringing up air resistance as the reason. His argument is that they would fall at the same rate in a vacuum.

      • VindictiveJudge@lemmy.world
        link
        fedilink
        English
        arrow-up
        7
        arrow-down
        13
        ·
        edit-2
        8 months ago

        He’s close, but not quite there. Air resistance slows things, and in a vacuum all things will fall at the same rate, yes. But, weight has zero impact on the rate an object falls through the atmosphere. Air resistance affects things based on their shape and permeability. He’s still saying that a heavier object will fall faster in atmosphere, all other things being equal, which is false.

        He clearly knows air resistance is a thing, he just doesn’t understand how it works.

        • MrConfusion@lemmy.world
          link
          fedilink
          arrow-up
          32
          arrow-down
          1
          ·
          edit-2
          8 months ago

          Hi. Physicist here. You are absolutely wrong. The mass of an object does not affect the magnitude of force of air resistance which acts upon a falling object. But the acceleration that object will have is given by Newton’s second law as Force divided by mass. So a heavy and a light ball with the same shape will experience the same air resistance, but the heavy ball will “care less” and thus fall faster.

        • dreugeworst@lemmy.ml
          link
          fedilink
          arrow-up
          20
          ·
          8 months ago

          But it does affect the downward force acting on the object. Given two objects of the same shape but with different masses, one will indeed fall slower than the other. This is because the ratio of weight to surface area differs a lot between the two. Here’s a calculator from NASA you can play with, and a relevant passage from the same page:

          If we have two objects with the same area and drag coefficient, like two identically sized spheres, the lighter object falls slower. This seems to contradict the findings of Galileo that all free-falling objects fall at the same rate with equal air resistance. But Galileo’s principle only applies in a vacuum, where there is NO air resistance and drag is equal to zero.

          https://www1.grc.nasa.gov/beginners-guide-to-aeronautics/termvel/

          • gamermanh@lemmy.dbzer0.com
            link
            fedilink
            English
            arrow-up
            2
            arrow-down
            8
            ·
            edit-2
            8 months ago

            That’s because there’s more than just weight that’s different there

            Don’t leave dry sarcasm on the Internet without the requisite sarcasm mark, lol, I ain’t gonna bitch out and add it now tho

        • andmonad@lemmy.world
          link
          fedilink
          arrow-up
          1
          ·
          8 months ago

          I don’t think he’s talking about air resistance but about density, which is pretty close to the notion of weight and also affect fall speed. He probably came to this conclusion by looking at how things fall (or not) through water.